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The present investigation for the alteration of the  free-ion wave functions, when the ions are put in a crystal, the effect of 
the crystal  environment is simulated by the Watson potential. The developed perturbation theoretical model for ionic solids 
by Basu and sengupta has been used for calculation of the different lattice-dynamical properties for the low-polarizability 
ionic crystal. The feature of used method it requered only input data necessary for the study of (KF) crystal properties are 
the Hartree–Fock wave functions of the constituent ions. Certain properties like, the dielectric properties and some phonons 
in symmetry directions, depend on the excited states of the crystal, are rather sensitive to this effect which varies from 
crystal. A unified study of the phase transition, cohesion, elastic constant, dielectric and vibrational properties of the (KF) 
crystal is given without using any adjustable free parameter, our approach and overall agreement obtained is well 
satisfactory. Finally the limitations and reliability of the present model for estimating the effect of the surroundings are 
critically discussed.    
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1. Introduction 
 
The perturbation model within the point dipole 

approximation provides a semimicroscopic description   
generally [1,2] for the ionic solids. For describing the 
lattice  mechanical properties, perturbation–model is also 
capable of describing the collective response of the 
electrons  and plasma frequencies in insulators [3]. For KF 
whose polarizability is rather low, drastic simplification in 
calculation may be achieved by  neglecting  the short 
range polarization effects complitelly. Bose et al [4] have 
discussed in detail the justification of this approximation 
for a certain group of ionic crystals. The discrepancies 
between theory and experiment may be solely attributed to 
the neglect of the short–range polarization effects [4]. This 
appears  to be only partly true  for the lattice mechanics of 
the KCl and NaCl crystals [1]. In present work a part of 
the discrepancy may be  explained by  including  the effect 
of the surroundings on the wave functions of the free ions. 
In perturbation  theoreetical –model our approach to 
neglect the effect of surroundings on the ionic wave 
functions when ions are transferred to a lattice.On place of 
simplified theoratical perturbation model we used artificial 
simulation of the crystal ssurroundings employing the 
Watson-spherical–potaintial approximation [5]. The 
present approach is only a semimicroscopic i.e no free 
parameter and only input data employed are the Hartree-
Fock wave functions of the ions. No crystal data necessary 
except structuer by Banerjee et al [6,7]. In the present 
application short–range polarization effects are not 
considering because these effects are assumed to be small. 
However ,even the inclusion of the effect of the ellectric  
field is too difficult. Watson [5] suggested a method of  
using  this effect by approximation of the real potantial 
and by a spherical potential. The effect of the suroundings 
will be more pronounced in the KF crystal due to 

polarizability values of its constituent ions. The free 
polarizability values of the ions in the KF crystals a_/a+  
10 (approxmatily). From the present investigation it will 
be found that the larger the ratio the more pronounced the 
cancellation effect. 

 
Theory: 
 
The details theoretical considerations and application 

of the approach have been discussed in a series of previous 
workers [1-4,6,7]. The basic idea  is to construct an energy 
expression for a system of interacting ions and then to 
introduce the approximations systematically to yield a 
manageable expression without sacrificing the major 
effects, and finally to extract the parameters describing the 
interactions from the wave functions of the free ions. In 
the present work we shall disscus about the certain 
properties like the polarizability of ions, some phonon 
branches in the symmetery directions, and the macroscopic 
dielectric properties, are rather sensitive to this effect to be 
simiulated by a simple potential. Although it is 
demonstrated that the free–ion wave function description 
of the crystal properties is a reasonable first 
approximation, for a more accurate calculation this effect 
need to be included.                                                                          

  
Watson potential 
 
Watson [5] suggested a simple model to simulate the 

solid. In particular he showed that for the O2- ion a 
spherical potential well of opposite charge around  the ion 
would stabilize it. The free oxygen ion is not a stable ion. 
The model has been exhaustively used to calculate the 
various  ion properties. Muhlhausen and Gordon [8] have 
discussed the effect of this stabilizing potential on the 
charge densities of some ionic crystals and its effect on the 
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static properties, but presently this effect is more 
pronounced when the excited states of the ions in crystal 
are involved. The crystal potential is generated by a hallow 
charged sphere which surrounds the ion and magnitude of 
the charge is equal  and opposite in sign to that of the 
enclosed ion. The form of the potential is given by  in                                   
Fig. 1. 

 

 
 

Fig. 1. Watson potential. 
  

Where r0 is the radius of the sphere. Instead of keeping 
r0 as a free parameter there are several suggestions for 
fixing r0 from various physical considerations. For the 
ionic solids since the actual potential seen by an ion is the 
Madelung potential, the radius may be simply fixed by the 
following relation: 

 
                                      r0=l/M                                        (2) 

 
Where l and M are the lattice and Madelung constant for 
the appropriate structure. It may be mentioned here that 
the radius remains the same for  positive and negative ions 
while the charge changes sign with the ion. From the 
nature of the potential chosen it is apparent that this will 
cause a reduction and an enhancement of the free-ion 
polarizability values of the–ve and +ve ions, respectively. 
Many other empirical studies [9,10] are also consistent 
with the above fact.            
                                                                             

Energy expression: 
 
For low polarizability ionic crystals the energy of an 

assembly of interacting ions simplifies to                             
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Where the first term represents the coulomb 
interaction between the ions and next three terms represent 
the interaction between dipole and monopole field, dipole 
and dipole field, and dipoler self-energy, respectively. The 
last two terms give the overlap interaction between the 
nearest neighbours and between the next–nearest 
neighbors (consider for anions only). For the first set of 

calculation of different parameters describing the 
interactions are evaluated using the free-ion wave 
functions as in [4]. For the second set of calculations 
employing the Watson potential, Eq. (3) may be 
interpreted as follows. The assembly of ions considerd 
whose energy is given by Eq. (3) no longer refers to those 
of the free ions. Each ion in this assembly to be described 
by the wave functions which have undergone alteration 
due to the effect of the Watson potential. The spherical 
symmetry being preserved, there is no charge transfer and 
each ion maintains its total charge as in the free ion. It 
implies that the first term alone remain unchanged while 
all other terms are affected. Now, the assembly of these 
so-called dressed ions which is starting point. Hence if we 
simply reinterpret the parameters occurring in Eq. (3) as 
referring to these dressed ions instead of the free ions all 
the relevent equations remain formally unchanged. With 
this new interpretation Eq. (3) is sufficient to calculate all 
the lattice –dynamical properties provided we obtain the 
parameters for the dressed ions. Equation (3) with the 
following adiabatic condition, will be used for the 
investigation of the dynamical properties. 
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Dynamical and dielectric properties: 
 
Expanding rij in Eq. (3) about the equilibrium 

configuration and retaining terms up to second order in 
energy, the dynamical equation is obtained in the usual six 
–vector notation, 

                    
UCZCZZCURURUm ])1([ 1'2 ααω −−−++=    (5) 

 
Where the symbols have the same significance as in [4]. 

The corresponding dielectric equations are similarly 
derived in the q-0 limit of the dynamicalequation, and the 
relevent Huang relations are given by   
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Where m is the reduced mass of the ion pair, R0=-R׀q-0 
andα cc

e 21 ααα += ;αc’s are not the free –ion 
polarizabilities as assumed earlier, but they represent the 
in-crystal values of the same obtained by subjecting the 
free ions to the watson spherical potential. The three 
macroscopic dielectric properties, the high –and the low –
frequencey dielectric constants, €∞ and €0, and the 
reststrahlen frequencey ω0, are related to b’s by 
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Є∞=1+4πb22, 
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Static properties: 
 
In order to calculate the static properties we use the 

parameters given in Table 1. The specfic propeties we 
have considered are the equlibrium lattice constant, the 
cohesive energy, the second –order elastic constants, the 
polymorphic phase transition, and the consequent volume 
change. All calculations refer to harmonic values. 
Assuming the potential parameters remain unchanged we 
have arranged the ions on a CsCl lattice and have solved 

numerically for the equlibrium configuration of the crystal 
in that phase. 

 
Determination of the parameters: 
 
The parameters involved in the different interactions 

are derived from the Clementi wave functions of the cor 
group, namely those describing the overlap interactions, 
depends solely on the ground –state wave functions of the 
ions. The other group depends critically on the excited 
states. We have followed the method described in to find 
the parameters. 

  

 
Table 1. Values of parameters. 

 
Crystal           b             ρ                 b’                          a             K                α+                                       α-  

                (10-8 erg)      (A0)        (10-8 erg cm-1)       (A0)        (A0 )        (10-24cm3)          (10-24cm3 ) 

 

KF            2.648 0.2552 -0.9541               2.648 1.830 1.201 (F)a         0.759 (F)  

 1.315 (W)b        0.074 (W) 

 
aFree-ion calculation  
bWatson potential calculation  
 
 

           ( ) ( ) ( )[ ]KraKrbr ijijij −′−−′′=′ expφ                 (8) 
 

Representing the next–nearest–neighbour anion 
overlap interaction [14] obtained from a calculation of the 
overlap charge density. The values of the parameters are 
given in Table 1. For consistency, however, we should 
have determined these parameters not from the free-ion 
charge densities but from the densities stabilized by the 
Watson potential. But it has been found that there is 
practically on change in the cation density in, the Watson 
potential approximation and the small change in the anion 
density is neglected in this preliminary application. 
Moreover since the overlap interactions do not involve the 
excited states and we do not expect an exact fit with 
experiment and some other effects, namely the van der 
Waals interaction, the many –body interaction, etc. Which 
are at least comparable to and if not more than this effect 
are neglected, this difference, we believe, is not at all 
significant in altering our general conclusion. The same is, 
however, not true for other group of parametrs, namely 
dipole polarizabilities of the ions which are entirely 
dependent on the excited states.   

 
Fig. 2. Phonon dispersion relation of KF crystal. 

 
Dashed and solid lines represent the free-ion and the 

Watson potential calculations, respectively.                     
Experimental points are taken from Ref [24].  

For the electronic polarizabilties of the ions we first of 
all use the free ion ones. For [KF] we use the results 
gained from the fully coupled Hartree-Fock (HF) method 
using the Clementi wave functions [12]. It is found that in 
the case of free ions where both the result are available, 
the method of the Schmidt et al.[13,14] is comparable in 
accuracy to that of the coupled HF calculations. In fact for 
the cations they agree within 1-2%. For anions it is slightly 
larger. In the absence of a coupled HF calculation for ions 
in the Watson potential we use those of Schmidt et al.We 
use the result of Schmidt et al. for polarizabilities of KF 
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crystal. It is important to that the Watson-sphere radii are 
1.100 A0 for the KF, which indicates that the change of the 
polarizablity of the anion will be stronger in the previous 
case same amount of charge in the sphere of lattice. The 
fractional change in polarizablity value of the same anion 

is approximately 30% for the KF. The corresponding 
enhancements in the cation value are only about 4%. The 
implications of these changes and also the effect of choice 
of a different basis on these calculations will be discussed 
in result. 

 
Table 2. Cohesion, Phase transition, and elastic properties .All calculations refer to harmonic values. 

                                                                

Lattice                  Cohesive energy                         Elastic constants                              Phase transition       Phase transition 
Constant (A0)         (10-12erg/mol)                            (1012 dyn/cm)                                         pressure                    volume 
                                                      C11                    C12                       C44 
Calc.    Expt.       Calc.     Expta.       Calc.     Exptb.     Calc.       Exptb.        Calc.   Expbt.      Calc.     Exptc.      Calc.       Exptc.   
 

3.75 3.65 167     158           0.658     0.757      0.149    0.135            0.128   0.133     17.75     22-29          13.6       11 
 

aReference 20 
bReference 21 
cReference 16 

 
2. Results and discussion 
 
The result obtained for the different lattice static and 

dynamic properties of the KF crystal are shown in Fig. 2 
and in Table 2-4. Over all broad description  for KF crystal 
both statics and dynamics is satisfactory. However, we 
must metion that the quantative agreement is still not 
satisfactory  for the static dielectric constant  the cause of 
which we shall discuss presently. 

Before we discuss the results of the Watson potential 
approach we indicates, in brief, the situation with respect 
to the static properties of KF crystal. The cohesion and the 
equilibrium lattice separation and the elastic constants 
considered individually are well reproduced. However, the 
model fails to take account of the Cauchy violation since 
this is a two–body central–interaction model. This 
difference in the elastic constants C12 and C44 is known to 
be explained by invoking many–body interactions [15]. 
The KF halides have been known not to undergo any 
transformation T. Yagi et al [16] have detected a transition 
of KF crystal at a still pressure in Table 2 with a 
considerable hystersis and a volume contraction of about 
7%. It quit well known that the transition pressure 
critically depends upon the details of the interactions and 

hence we do not expect a quantative agreement in this 
simple calculation. It is expected that the general trend of 
agreement of the static properties will remain more or less 
the same even if we use the Watson potential 
approximation. But in the case of dynamics and the 
dielectric properties this effect is quit important. The two 
sets of calculation given in Table 3 and 4 and Fig. 2 
indicates that the inclusion of the effect of the potential 
improves the agreement in the right direction in all 
properties. For the phonon frequencies of the KF crystal, 
in particular the phonons of the acoustic branches in the 
<100> and <110> symmetry directions, marked 
improvement is noticed. The major disagreement occurs in 
the TO branches. This essentially due to the neglect of the 
short –range polarization effects. However, the  success of 
the present calculation may be appreciated if we compare 
it with other existing calculations. Both sets of the present 
parameter-free calculations  may be compared with our 
previous calculation [17] and that singh Chandra [18], who 
used six and twelve free parameters, respectively, and 
obtained better agreement for the TO KF crystal. This due 
to the fact that both these calculations include the effect of 
short range polarization through the shell model, while the 
present calculation totally neglects it. 

 
 

Table 3. Macroscopic dielectric properties. All calculations refer to harmonic values. 
 

                 High-frequencey                 Low-frequencey                        Reststrahlen 
                dielectric constant                          dielectric constant                          frequencey  (THz)                     
Crystal        Calc.(F)a     Calc.(W)b   Exptc             Calc.(F)        Calc.(W)      Exptc.        Calc.(F)        Calc.(W)        Expt. 

KF              2.13 1.97 1.96 9.73           8.23 5.43 30.22         33.46               38.76e 
                                                                                                                                                                           40.21d 

aFree –ion calculation,bWatson potential calculation 
c- [22],d-[ 23],e,f [24] 
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Table 4. Some selected phonons. All calculations refer to harmonic values (in THz). 
 

KF                q                                            LO                       LA                        TO                        TA             

<1000>             Calc.(F)a          6.45                     5.71                      5.50                      2.75 

                                      

                          Calc.(W)b               6.60                    5.90                      5.65                      2.90         

                                      

                         Expt.c                 6.56                     5.97                     5.52                      2.83 
aFree –ion Calculation,bWatson potential calculation,c-[24],d-[23]. 
 
 

On the whole we observe that by using of Watson 
potential approximation in the framework of the 
perturbation-model approach shows a some what 
improved description of the lattice dynamics of the low-
polarizablity ionic crystals without entailing much 
additional computation. It is also concluded that the 
remaining discrepancy is mainly due to the short–range 
polarization effects which we discussed in [4]. The present 
work the remaing discrepancy in the static dielectric 
constant may be entirely due to the first order exchange 
interaction determined dipolar distortion. A critical 
discussion given by Roy et al [19]. Before concluding let 
us some of the limitations of the present calculation. The 
reliability of the estimate of the surroundings on the lattice 
dynamical properties depends upon the two factors. Firstly 
the radius of the sphere is a very sensitive parameters and 
choice of the basis Schmidt et al [14] have discussed 
several variants, keeping the radius of the sphere the same 
for all of them. 

In  KF crystal considered Watson potential description 
of the properties shows distinct improvement over that of 
the free-ion calculation and no inconsistency appears. 
However, to contribute to a better understanding  of the 
situation and to assert the reliability of the method, one 
needs to apply it to few other cases a systematic trend 
indicating improvement is discernible. For some metal 
oxide this theory applicable and satisfactory [25].  
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